

Synthesis and evaluation of a new inhibitor of phosphoglucose isomerases: the enediolate analogue 5-phospho-D-arabinohydroxamate

Renaud Hardré, Corinne Bonnette, Laurent Salmon,* and Alain Gaudemer

Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS-URA 1384, ICMO, Université Paris-XI, 91405 Orsay, France

Received 9 September 1998; accepted 19 October 1998

Abstract

Designed as a high energy intermediate analogue inhibitor of the potent chemotherapeutic target phosphoglucose isomerases, 5-phospho-D-arabinohydroxamate was efficiently synthesized in a two steps procedure. To date, it proved to be the strongest competitive inhibitor with respect to substrate D-fructose-6-phosphate (K_i down to 98 nM and K_m/K_i values up to 513). A comparative inhibition study of this compound and other known strong inhibitors on phosphoglucose isomerases from three different sources is also reported. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Carbohydrates; Enzyme inhibitors; Hydroxamic acids; Phosphoric acid and derivs.

1. Introduction

The phosphoglucose isomerases (PGI, phosphoglucose isomerases or D-glucose-6-phosphate isomerases, (EC 5.3.1.9) catalyze the reversible isomerization reaction outlined in Scheme 1 between D-glucose-6-phosphate

Scheme 1. Isomerization reaction catalyzed by D-glucose-6-phosphate isomerases.

(G6P) and D-fructose-6-phosphate (F6P).^{1,2} PGI are of interest for a number of reasons. First, these enzymes play a central role in the metabolism of phosphorylated sugars (glycolysis, gluconeogenesis and phosphate pentose pathways).³ Second, PGI are involved in various and important pathological processes: (i) PGI deficiency is a well-known congenital disorder with the typical manifestation of nonspherocytic hemolytic anemia in humans,⁴ (ii) since the observation of increased glycolytic activity in tumor cells,^{5,6} numerous reports have described the use of glycolytic enzymes, e. g. PGI,⁶ as tumor progression markers, (iii) very recently, PGI has been suggested to be closely related to the tumor cell autocrine motility factor,⁷ a tumor-secreted cytokine which

Fax: + 33 1 69 15 72 81; e-mail: lasalmon@icmo.u-psud.fr

stimulates cell migration *in vitro* and metastasis *in vivo*, (iv) because parasites like *Trypanosoma brucei* and *Plasmodium falciparum* derive most of their energy from glycolysis, PGI and other glycolytic enzymes are attractive targets for chemotherapeutic actions. Third, and surprisingly, the precise structural features of PGI remain unknown: (i) the primary sequences from a number of sources were determined only very recently, ^{7,9} (ii) only two X-ray diffraction studies of the enzyme have been reported which led to structures that still need refinement in order to identify active site residues involved in the isomerization mechanism. ¹⁰ Fourth, only a very few potent high energy intermediate (HEI) analogue inhibitors of the PGI-catalyzed reaction have been reported so far. ¹¹ These reasons led us to undertake the synthesis and evaluation of the potent HEI analogue inhibitor 5-phospho-D-arabinohydroxamate 1, for which we report a very convenient synthesis. Using identical experimental conditions, we also report a comparative study of its inhibitory properties with respect to the known competitive inhibitors 5-phospho-D-arabinonate 2¹² and 6-phospho-D-gluconate 3^{2,13} (Scheme 2) on three PGI from yeast (YPGI), rabbit muscle (RmPGI) and *Bacillus stearothermophilus* (BsPGI).

Scheme 2. Models of the cis-1,2-enediolate high-energy intermediate species of the PGI-catalyzed isomerization reaction.

2. Results and Discussion

The mechanism of isomerization of PGI has been postulated to involve a proton transfer through a 1,2-cisenediolate HEI (Scheme 1),^{1,12,14-16} similar to that observed in the triosephosphate isomerase (TIM) catalyzed isomerization of dihydroxyacetone-phosphate to D-glyceraldehyde-phosphate. The hydroxamate function closely mimics the 1,2-cis-enediolate HEI, with the atoms O₁, N, C₂ and O₂ coplanar (Scheme 2). This particular feature generally confers to hydroxamate-based inhibitors excellent inhibition properties, as shown for example with the TIM inhibitor phosphoglycolohydroxamate.¹⁷ For xylose isomerase catalyzed reactions, where a hydride shift mechanism has been shown to operate, D-threonohydroxamate appears to have a close structural relationship to the proposed rearrangement transition state.¹⁸ Because of their metal-complexing properties, numerous reports have described the use of hydroxamate-based inhibitors with metalloenzymes.¹⁹

2.1 Preparation of high energy intermediate analogues

G6P, which has the same absolute configuration at carbon atoms C-3, C-4 and C-5 as compounds 1 and 2 have at carbons C-2, C-3 and C-4, was considered as suitable starting compound (Scheme 3). The synthesis of

Scheme 3. Conditions and reagents: a) 1-Dowex® 50WX8-100/H+, 2-O₂/NaOH, 72 hr, 20°C, 3-HCl 1N, 4-Ba(OH)₂. b) 1-Dowex® 50WX8-100/H+, 2-Freeze-drying, 78 % (2 steps). c) 1-MeONa/MeOH, H₂NOH.HCl, 20°C, 60 min, 2-Bio-Gel® P-2, 69 %.

2 was achieved from the commercially available barium salt of G6P, using a modified procedure first reported for the synthesis of this product from the more expensive disodium salt of F6P.¹² The barium salt of 2 was converted to its sodium salt by ion exchange chromatography. D-Arabinolactone-5-dihydrogenophosphate 4 was simply obtained by freeze-drying of an aqueous solution of the acidic form of 2 (overall yield from G6P: 78%). Addition of an hydroxylamine methanolic solution to compound 4, according to the strategy used for the synthesis of non-phosphorylated aldonohydroxamic acids from aldonolactones, and subsequent desalting by size exclusion chromatography on Bio-Gel® P-2, afforded 5-phospho-D-arabinohydroxamate 1 in 69 % yield. In view of the spectroscopic data obtained for 1 which are in full agreement with the assigned structure, it appears that the synthetic scheme we had previously reported did not lead to the same compound. In this previous report, 1 was thought to have been obtained from hydrogenolysis of its perbenzylated precursor. A reexamination of the spectroscopic, kinetic and analytical data would indicate that during this last step, the hydroxamic group would have undergone a transformation into carboxylic acid and hydroxylamine.

2.2 Comparative evaluation of 1 versus 2 and 3 for inhibition of PGI

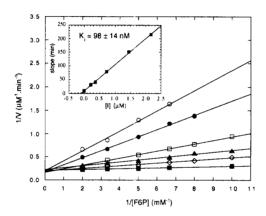


Figure 1. Inhibition of BsPGI (50 mM tris.HCl buffer, 30 °C, pH = 8.0). Double reciprocal plot of initial reaction velocity versus F6P concentration obtained at various concentrations of inhibitor 1 versus F6P concentration (Lineweaver-Burk graphical representation): \blacksquare , no inhibitor; \diamondsuit , $[I] = 0.22 \,\mu\text{M}$; \spadesuit , $[I] = 0.36 \,\mu\text{M}$; \square , $[I] = 0.72 \,\mu\text{M}$; \spadesuit , $[I] = 1.45 \,\mu\text{M}$; \bigcirc , $[I] = 2.17 \,\mu\text{M}$. Lines drawn obtained from a non-linear least squares fit to the observed data using Michaelis-Menten equation for competitive inhibition.

Figure 1 clearly demonstrates competitive inhibition of BsPGI by 1 with a K_i value of 98 nM. Competitive inhibition was also observed for YPGI and RmPGI. In the experimental conditions we used, the K_i values for 1 with YPGI, BsPGI and RmPGI are lower than the values for 2, the strongest known PGI inhibitor so far, and a fortiori for 3 (Table 1). The order of the respective inhibition constants $K_i(1) < K_i(2) < K_i(3)$ remains identical

Table 1 Inhibitory effect of 1, 2 and 3 on phosphoglucose isomerases from various origins^a

		-				
PGI	F6P ^b K _m (µM)	1 Κ _i (μΜ)	<i>K</i> _m / <i>K</i> _i	$K_{i}(\mu M) = K_{m}/K_{i}$	$\frac{3^{\mathrm{b}}}{K_{\mathrm{i}}(\mu\mathrm{M})} = K_{\mathrm{m}}/K_{\mathrm{i}}$	
YPGI	69 ± 6	0.228 ± 0.018	303	2.1 ± 0.4 33	123 ± 12 0.6	
BsPGI	44.7 ± 0.8	0.098 ± 0.014	456	1.0 ± 0.1 45	41 ± 6 1.1	
RmPGI	100 ± 9	0.195 ± 0.006	513	1.47 ± 0.07^{b} 68	42 ± 5 2.4	
	YPGI BsPGI	K_{m} (μ M) YPGI 69 ± 6 BsPGI 44.7 ± 0.8	K_{m} (μM) K_{i} (μM) YPGI 69 ± 6 0.228 ± 0.018 BsPGI 44.7 ± 0.8 0.098 ± 0.014	K_{m} (μM) K_{i} (μM) K_{m}/K_{i} YPGI 69 ± 6 0.228 ± 0.018 303 BsPGI 44.7 ± 0.8 0.098 ± 0.014 456	K_m (μΜ) K_i (μΜ) K_m/K_i K_i (μΜ) K_m/K_i YPGI 69 ± 6 0.228 ± 0.018 303 2.1 ± 0.4 33 BsPGI 44.7 ± 0.8 0.098 ± 0.014 456 1.0 ± 0.1 45	$K_{\rm m}$ (μM) $K_{\rm i}$ (μM) $K_{\rm m}/K_{\rm i}$ $K_{\rm i}$ (μM) $K_{\rm m}/K_{\rm i}$ $K_{\rm i}$ (μM) $K_{\rm m}/K_{\rm i}$ YPGI 69 ± 6 0.228 ± 0.018 303 2.1 ± 0.4 33 123 ± 12 0.6 BsPGI 44.7 ± 0.8 0.098 ± 0.014 456 1.0 ± 0.1 45 41 ± 6 1.1

^a 50 mM tris.HCl buffer, pH=8.0, 30°C, ionic strength=17 mM (kinetic assays performed according to Noltmann²³). ^b Values in the order of the previously published ones determined in other experimental conditions. ^{2,12,15,22,24}

^{*} Selected data: 4: 13 C NMR (D₂O) δ 176.5 (C-1), 74.4 and 73.1 (C-2 and C-3), 80.1 (d, J_{4P} 7.4 Hz, C-4), 64.1 (d, J_{5P} 4.6 Hz, C-5); HR-MS (electrospray, negative ionization, TMS derivative): calcd for $C_{17}H_{41}O_8PSi_4$ (M): 516.1616, found: 516.1605. 1: 13 C NMR (D₂O) δ 172.6 (C-1), 71.5 and 71.2 (C-2 and C-3), 70.4 (d, J_{4P} 6.6 Hz, C-4), 66.3 (d, J_{5P} 3.7 Hz, C-5); HR-MS (electrospray, negative ionization, TMS derivative): calcd for $C_{25}H_{65}NO_9PSi_7$ (M-CH₁): 750.2782, found: 750.2772.

whatever the enzyme source is. We can conclude, at least under our conditions, that 1 is the best competitive PGI inhibitor to date. The ratios K_m/K_i for 1 reported in Table 1 ranging from 300 to 500 indicate that 1 rather behaves as a HEI analogue inhibitor of the PGI-catalyzed isomerization reaction than as a substrate analogue inhibitor. Similarly but to a lesser extend, 2 appears to also behave as a HEI analogue inhibitor with ratios K_m/K_i in the order of 50. In the case of 3, K_m/K_i values in the order of 1 confirm that 3 acts more as a substrate analogue inhibitor. Hence, 1 appears as the best mimic ever synthesized of the 1,2-cis-enediolate HEI thought to be involved in the PGI-catalyzed isomerization of F6P.

Comparative evaluation of 1 for inhibition of YPGI, BsPGI and RmPGI in our conditions shows that this compound displays poor enzyme specificity: K_i values do not vary that much among the three enzymes. The same conclusion stands for the other inhibitors 2 and 3. These results are in agreement with the expected high degree of conservation of the active site of these enzymes.²²

1 seems to be a very promising compound, as it might also be a very good inhibitor of other enzymes, like for example D-mannose-6-phosphate isomerase¹¹ and D-glucosamine-6-phosphate synthase.^{11,25} Our results confirm that hydroxamate-based compounds are the best analogues of the 1,2-cis-enediolate HEI proposed to be involved in many enzyme-catalyzed isomerizations, and that more specific derivatives might be of high chemotherapeutic interest. Our attention is now focused on biological evaluation of 1 and crystallographic studies of PGI and other related enzymes with this potent high energy intermediate analogue inhibitor at the active site.

Acknowledgements

The Ministère de l'Education Nationale, de la Recherche et de la Technologie (RH, CB) and the Institut de Formation Supérieure BioMédicale (CB) are gratefully acknowledged for financial support.

References

- 1. Walch, C. In Enzymatic Reaction Mechanisms; Freeman & Co.: San Francisco, 1979; pp. 586-590.
- 2. Salas, M.; Vinuela, E.; Sols, A. J. Biol. Chem. 1965, 240, 561.
- 3. Morgan, M. J. FEBS Letters 1981, 130, 124.
- 4. Merkle, S.; Pretsch, W. Blood 1993, 81, 206.
- 5. Fillela, X.; Molina, R.; Jo, J.; Mas, E.; Ballesta, A. M. Tumor Biol. 1991, 12, 360.
- 6. Newton, H. B.; Fleisher, M.; Schwartz, M. K.; Malkin, M. G. Neurology 1991, 41, 395.
- 7. Watanabe, H.; Takehana, K.; Date, M.; Shinozaki, T.; Raz, A. Cancer Res. 1996, 56, 2960.
- 8. (a) Verlinde, C. L. M. J.; Witmans, C. J.; Pijning, T.; Kalk, K. H.; Hol, W. G. J.; Callens, M.; Opperdoes, F. R. Protein Science 1992, I, 1578. (b) Roth, E. F., Jr; Calvin, M.-C.; Max-Audit, I.; Rosa, J.; Rosa, R. Blood 1988, 72, 1922.
- 9. Fothergill-Gilmore, L. A.; Michels, P. A. M. Prog. Biophys. Molec. Biol. 1993, 59, 105.
- (a) Shaw, P. J.; Muirhead, H. J. Mol. Biol. 1977, 109, 475.
 (b) Achari, A.; Marshall, S. E.; Muirhead, H.; Palmieri, R. H.; Noltmann, E. A. Phil. Trans. R. Soc. Lond. B 1981, 293, 145.
- 11. Schomberg, D.; Salzmann, M. In Enzyme Handbook; Springer-Verlag: Berlin, Heidelberg, 1990.
- 12. Chirgwin, J. M.; Noltmann, E. A. J. Biol. Chem. 1975, 250, 7272.
- 13. Parr, C. W. Biochem. J. 1957, 65, 34p.
- 14. (a) Bruns, F.; Okada, S. Nature 1956, 177, 87. (b) Rose, I. A.; O'Connell, E. L. Biochim. Biophys. Acta 1960, 42, 159.
- 15. Dyson, J. E. D.; Noltmann, E. A. J. Biol. Chem. 1968, 243, 1401.
- 16. Shaw, P. J.; Muirhead, H. FEBS Letters 1976, 65, 50
- (a) Lewis, D. J.; Lowe, G. J. Chem. Soc. Chem. Comm. 1973, 713. (b) Collins, K. D. J. Biol. Chem. 1974, 249, 136. (c)
 Davenport, R. C.; Bash, P. A.; Seaton, B. A.; Karplus, M.; Petsko, G. A.; Ringe, D. Biochemistry 1991, 30, 5821.
- 18. Allen, K. N.; Lavie, A.; Petsko, G. A.; Ringe, D. Biochemistry 1995, 34, 3742.
- (a) Izquierdo-Martin, M.; Stein, R. L. J. Am. Chem. Soc. 1992, 114, 325. (b) Odake, S.; Okayama, T.; Obata, M.; Morikawa, T.; Hattori, S.; Hori, H.; Nagai, Y. Chem. Pharm. Bull. 1990, 38, 1007. (c) Ikeda-Saito, M.; Shelley, D. A.; Lu, L.; Booth, K. S.; Caughey, W. S.; Kimura, S. J. Biol. Chem. 1991, 266, 3611. (d) Aulabaugh, A.; Schloss, J. V. Biochemistry 1990, 29, 2824. (e) Thomasset, N.; Hamedi-Sangsari, F.; Tournaire, R.; Navarro, C.; Malley, S.; Goetsen, L.; Grange, J.; Vila, J. Int. J. Cancer 1991, 49, 421.
- 20. Mathis, F. C. R. Hebd. Séances Acad. Sci. 1949, 229, 226.
- 21. Bonnette, C.; Salmon, L.; Gaudemer, A. Tetrahedron Lett. 1996, 37, 1221.
- Marchand, M.; Kooystra, U.; Wierenga, R. K.; Lambeir, A.-M.; Van Beeumen, J.; Opperdoes, F. R.; Michels, P. A. M. Eur. J. Biochem. 1989, 184, 455.
- 23. (a) Noltmann, E. A. J. Biol. Chem. 1964, 239, 1545. (b) Noltmann, E. A. Methods Enzymol. 1966, 9, 557.
- 24. Kahana, S. E.; Lowry, O. H.; Schulz, D. W.; Passonneau, J. V.; Crawford, E. J. J. Biol. Chem. 1960, 235, 2178.
- 25. Leriche, C.; Badet-Denisot, M.-A.; Badet, B. J. Am. Chem. Soc. 1996, 118, 1797.